Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy.

نویسندگان

  • Sapun H Parekh
  • Young Jong Lee
  • Khaled A Aamer
  • Marcus T Cicerone
چکیده

Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm⁻¹, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband Coherent Anti-Stokes Raman Scattering

Broadband coherent anti-Stokes Raman scattering (BCARS) microspectroscopy is a unique label-free imaging modality that provides detailed chemical information at each pixel. In minutes, this technique captures a “hyperspectral” cube that co-registers microscopic spatial features with chemical signatures, sensitive to molecular content and structure. This technique can delve into the molecular in...

متن کامل

Abstract Submitted for the MAR06 Meeting of The American Physical Society Suppression of Non-Resonant Background in Broadband Coher- ent Anti-Stokes Raman Scattering Microscopy with Interferometry1 TAK

Submitted for the MAR06 Meeting of The American Physical Society Suppression of Non-Resonant Background in Broadband Coherent Anti-Stokes Raman Scattering Microscopy with Interferometry1 TAK KEE, MARCUS CICERONE, National Institute of Standards and Technology — We demonstrate an interferometric technique for suppressing non-resonant background in broadband coherent anti-Stokes Raman scattering ...

متن کامل

Chemically specific imaging of cryptosporidium oocysts using coherent anti-Stokes Raman scattering (CARS) microscopy.

We demonstrate the application of coherent anti-Stokes Raman scattering microscopy for the rapid, label-free chemical imaging of waterborne pathogens. Chemically selective images of cryptosporidium were acquired in just a few seconds using coherent anti-Stokes Raman scattering microscopy, demonstrating its capability for the rapid detection of cryptosporidium at the single oocyst level. We disc...

متن کامل

Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy.

The recently developed Coherent Anti-stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy have provided new methods to visualize the localization and regulation of biological molecules without the use of invasive and potentially perturbative labels. They allow rapid imaging of specific molecules with high resolution and sensitivity. These tools have been ef...

متن کامل

One-laser interferometric broadband coherent anti-Stokes Raman scattering.

We introduce an interferometric technique for eliminating the non-resonant background of broadband coherent anti-Stokes Raman scattering (CARS) microscopy. CARS microscopy has been used for imaging a number of biological samples and processes, but the studies are mostly limited to detecting lipids in biological systems by probing the C-H stretch. Non-resonant background and incoherent noise sou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 99 8  شماره 

صفحات  -

تاریخ انتشار 2010